Mark scheme - Redox

Question		Answer/Indicative content	Marks	Guidance
1		Element oxidised: Change Oxygen/O from: -2 to $0 \checkmark$ Element reduced: Nitrogen $/ \mathrm{N}$ Change from +5 to $+4 \checkmark$	2(AO2.2×2)	MAX 1 mark if no '+' sign for oxidation number ALLOW 2- ALLOW 5+ AND 4+ ALLOW O_{2} for oxygen ALLOW 1 mark for all oxidation numbers correct, but oxidised and reduced the wrong way around IGNORE numbers around equation i.e. treat as rough working Examiner's Comments Less than half the candidates answered this question correctly. This may be because they are not used to assigning oxidation numbers within formulae that contain brackets.
		Total	2	
2	i	Oxidised AND (Mg) transfers/loses/donates 2 electrons \checkmark 2 essential	1	ALLOW Mg loses 6 electrons: 3 Mg in equation $\text { ALLOW } \mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$ IGNORE oxidation numbers (even if wrong) Examiner's Comments Despite the question clearly asking for a response in terms of the number of electrons transferred, most candidates answered in terms of oxidation number changes. Candidates are recommended to read the question and to answer in terms of its requirements. Underlining 'number of electrons' may have helped candidates to answer the question that had been set.
	ii	FIRST CHECK ANSWER ON THE ANSWER LINE IF answer = 2.26 (3 SF) award 3 marks \qquad $n\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)=\frac{1.24 \times 50.0}{1000}=0.062(0)(\mathrm{mol})$	3	At least 3SF needed throughout BUT ALLOW no trailing zeroes (e.g. 0.062 for

				based on practical work. There were many random responses to this question, with relatively few candidates identifying that solid magnesium phosphate could be obtained by filtration, followed by drying.
	iv	Formula MgO OR $\mathrm{Mg}(\mathrm{OH})_{2} \mathrm{OR} \mathrm{MgCO}_{3}$ OR soluble Mg salt $\sqrt{ }$ Equation $\begin{aligned} & 3 \mathrm{MgO}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{OR} \\ & 3 \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}+ \\ & 6 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{OR} \\ & 3 \mathrm{MgCO}_{3}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}+ \\ & 3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	2	In equation: NO ECF from incorrect formula ALLOW multiples IGNORE state symbols (even if incorrect) Soluble Mg salts include $\mathrm{MgCl}_{2}, \mathrm{MgSO}_{4}, \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{MgBr} 2, \mathrm{Mgl}_{2}$ If unsure, check with TL e.g. $3 \mathrm{MgCl}_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{HCl}$ Examiner's Comments Candidates were expected to identify a suitable reagent for this reaction, with most choosing magnesium oxide, hydroxide or carbonate. Credit was also given for using a soluble magnesium salt such as its sulfate, chloride or nitrate. The correct equation often followed, but errors sometimes appeared in the form of incorrect formulae, such as MgOH for magnesium hydroxide. The exemplar shows a good clear response, using MgO as the reagent. Exemplar 2 (iv) Magnesium phosphate can also be, prepared by reacting phosphoric acid with a compound of magnesium. Choose a suitable magnesium compound for this preparation and write the equation for Formula of compound Equaben $3 \mathrm{MgO}_{\mathrm{O}}^{\mathrm{O}} \mathrm{ZH}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{M}_{3}\left(\mathrm{O}_{4}\right)_{2}+3 \mathrm{H}_{2} \mathrm{O}$
		Total	8	
3		Disproportionation Oxidation AND reduction of same element/iodine OR lodine has been oxidised and lodine has been reduced \checkmark Oxidation from $\mathbf{0}$ to $\boldsymbol{+ 1}$ in HIO , Reduction from $\mathbf{0}$ to $\mathbf{- 1}$ in $\mathbf{H I} \checkmark$	3	ALLOW I or I_{2} for iodine IGNORE numbers around equation for oxidation states ALLOW 1- for -1 AND $1+$ for +1 NOTE (for iodine $/ l_{2}$) from 0 only needs to be seen once, does not need to be stated twice ALLOW 1 mark for 3 ox nos correct but no mention of words oxidation/reduction: $0 \text { in } \mathrm{I}_{2} \text { AND -1 in } \mathrm{HI} \text { AND +1 in HIO }$

2.1.5 Redox

					ALLOW 1 mark for species missing: lodine oxidised (from 0) to +1 AND iodine reduced (from 0) to -1 Examiner's Comments Most candidates were aware of disproportionation but lost marks by not stating the species or whether the process was oxidation or reduction. Exemplar 2 Here the candidate has lost a mark for not stating the initial oxidation number of elemental iodine as 0 .
		ii	Chlorine is toxic/poisonous OR forms halogenated hydrocarbons OR forms carcinogens/toxic compounds \checkmark	1	ALLOW (reacts with hydrocarbons to) form carcinogens/toxic compounds IGNORE - chlorine causes cancer - harmful/dangerous - chlorine causes breathing problems Examiner's Comments The majority of candidates stated that chlorine is toxic or forms carcinogens, although some stated that chlorine is a carcinogen which was not credited. 12
			Total	4	
4		i	$\begin{aligned} & \mathbf{2 ~ A l (s) + 6 \mathrm { CH } _ { 3 } \mathrm { COOHCaq }) \rightarrow \mathbf { 2 }} \\ & \left(\mathrm{CH}_{3} \mathrm{COOO}_{3} \mathrm{Al}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g}) \checkmark\right. \end{aligned}$	1	ALLOW multiples, e.g. $\begin{aligned} & \mathrm{Al}(\mathrm{~s})+3 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightarrow \\ & \left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} \mathrm{~A} 1(\mathrm{aq})+11 / 2 \mathrm{H}_{2}(\mathrm{~g}) \end{aligned}$ Examiner's Comments The majority of candidates were able to balance this equation using whole numbers or half multiples. Where there was an error, it was invariably for the balancing number of H_{2}.

2.1.5 Redox

		ii	Element oxidised: aluminium/AI 0 to $+3 \checkmark$ Element reduced: hydrogen/H +1 to $0 \checkmark$	2	ALLOW $3+$ for +3 and $1+$ for +1 ALLOW H2 for hydrogen ALLOW 1 mark for elements AND all oxidation numbers correct, but H in oxidised line and $A I$ in reduced line ' + ' is required in +3 and +1 oxidation numbers IGNORE numbers around equation (treat as rough working) Examiner's Comments This question was not answered as well as expected. It was pleasing to see that almost all candidates recognised the importance of writing oxidation numbers correctly including a ' + ' or ' - ' sign where needed. Common mistakes included giving the total contribution from an element as opposed to the oxidation state of each atom of the element.
			Total	3	
5				2	MAX 1 mark if no '+' sign for oxidation number ALLOW 3+ ALLOW 1+ ALLOW H_{2} for hydrogen ALLOW 1 mark for all oxidation numbers correct, but oxidised and reduced the wrong way around IGNORE numbers around equation i.e. treat as rough working Examiner's Comments A good proportion of candidates were able to achieve the 2 marks here. A minority correctly identified the elements, but not the oxidation numbers. Aluminium was credited more often than hydrogen, perhaps as only some of the hydrogen atoms are reduced. Some amazing oxidation states were claimed for $\mathrm{S}, \mathrm{O}, \mathrm{Al}$ and H with more electrons lost than the atoms had. Very few candidates assigned the oxidation and reduction incorrectly.

2.1.5 Redox

				Examiner's Comments The correct answer was almost universally known.
	ii	Disproportionation \checkmark	1	QWC 'disproportionation' spelled correctly. Examiner's Comments The correct answer was almost universally known with just the rare misspelling of disproportionation seen.
		Total	2	
8	i	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} \checkmark$	1	ALLOW upper case S and P, and subscripts, e.g. $2 \mathrm{~S}_{2} 3 \mathrm{P}_{6}$ Examiner's Comments This part was generally answered well showing a good understanding of electron configuration. Candidates frequently used subscripts rather than superscripts for denoting the number of electrons in a particular sub-shell and although this was still credited the correct use of notation should be emphasised in lessons.
	ii	(Mg) loses / transfers / donates two electrons \checkmark	1	ALLOW Mg loses the 3s electrons provided electronic configuration in (i) is $3_{s}{ }^{2}$ $\text { ALLOW Mg } \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$ IGNORE reference to oxidation numbers / states Examiner's Comments Most candidates understood that oxidation resulted in the loss of electrons although some answers considered changes in oxidation number. A significant number of candidates did not specify how many electrons were lost when magnesium was oxidised preventing the award of the mark.
		Total	2	
9		Cl (has been oxidised) from $\mathrm{Cl}=-1$ to $\mathrm{Cl}=$ $0 \checkmark$ Mn (has been reduced) from $\mathrm{Mn}=+4$ to $M n=+2 \checkmark$	2	ALLOW 4+ OR 4 OR 2+ OR 2 ALLOW oxidation numbers written above the equation but IGNORE these if oxidation numbers are given in the text ALLOW one mark for Cl is oxidised because the oxidation number increased by 1 AND

2.1.5 Redox

				Mn is reduced because the oxidation number decreased by 2 ALLOW one mark if all oxidation numbers are correct but redox is incorrect. IGNORE HCI is oxidised AND MnO_{2} is reduced IGNORE correct references to electron loss / gain DO NOT ALLOW incorrect references to electron loss / gain Examiner's Comments Overall the answer to this question could be determined by most candidates. Some were confused by the fact that Cl appeared in two oxidation states in the products and suggested that this was a type of disproportionation reaction with the Cl in MnCl_{2} having a -2 oxidation state.
		Total	2	
10		Oxidised AND because aluminium has lost (three) electrons \checkmark	1	ALLOW 'donated' for 'lost' IGNORE where electrons are transferred to IGNORE AI $\rightarrow \mathrm{Al}^{3+}+3 \mathrm{e}^{-}$ DO NOT ALLOW 'an electron' or incorrect number of electrons Examiner's Comments This question was very well answered. Where candidates did not gain the mark it was often because they forgot to discuss the oxidation of aluminium in terms of electron loss, but instead justified it in by using oxidation numbers.
		Total	1	
11		Element oxidised: zinc / Zn 0 to $+2(1)$ Element reduced: carbon / $C$$\quad+4$ to $+2(1)$	2	allow 1 mark for all oxidation numbers correct, but oxidised and reduced the wrong way around max 1 mark if missing ' + ' or 'if given as charges e.g. ' $2+$ '
		Total	2	

